Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(39): 90209-90222, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36976472

RESUMO

Currently, more than 55% of global indium production is consumed for indium tin oxide (ITO) production because of its excellent display properties mainly driven by demand for flat panel displays (FPDs) or LCDs. At the end of life, the waste LCD flows to the e-waste stream, accounts for 12.5% of the global e-waste, and is forecasted to be increasing progressively. These waste LCDs are potential wealth for indium that poses a threat to the environment. The volume of waste LCD generation is a global as well as national concern from a waste management perspective. Techno-economical recycling of this waste can be a panacea to the challenges associated with the lack of commercial technology and extensive research. Hence, a mass production capable of beneficiation and classification of ITO concentrate from waste LCD panels has been investigated. The mechanical beneficiation process for waste LCDs consists of five steps of operation, i.e., (i) size reduction by shredding by jaw milling, (ii) further size reduction to feed for ball milling, (iii) ball milling, (iv) classification to enrich ITO concentrate, and (v) characterization ITO concentrate and confirmation. The bench-scale process developed is intended to integrate with our indigenously developed dismantling plant (which can handle 5000 tons per annum) to handle separated waste LCD glass for indium recovery. Once scaled up, it can be integrated for continuous operation synchronized with the LCD dismantling plant.


Assuntos
Resíduo Eletrônico , Cristais Líquidos , Gerenciamento de Resíduos , Índio , Resíduo Eletrônico/análise , Reciclagem
2.
Waste Manag ; 144: 294-302, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35427901

RESUMO

Global tantalum production from mines averages 1800 tons per year and hardly increases, but demand for tantalum in the electronics industry consistently increasing. Globally, 50% of total tantalum produced is being used for tantalum capacitors manufacturing, almost all demand from various industries is mainly met by primary resources only. Tantalum production and supply predominantly dominated by Congo and Rwanda which accounts for > 50%, add disadvantages for the strategic and economic competitiveness of other nations. To address the monopoly dominated by Congo and Rwanda, and the disparity of tantalum primary reserve, exploitation of secondary resources can alternatively address the drawbacks of primary resource distribution. Currently, hardly < 1% of tantalum getting recycled, and the poor recycling rate of tantalum is mainly contributed by the lack of efficient and sustainable valorization technology for recycling tantalum-bearing scraps like electronic capacitors and semiconductor industry tantalum scrap. In the current investigation, a sustainable tantalum extraction process from scrap dominated by hydrometallurgical route has been developed. Tantalum scrap which is passive to leach for tantalum recovery was calcinated for oxidation of TaN content and followed by tantalum has been leached using a mixture of NaF and HCl, a specially developed novel lixiviant for the purpose as an HF substituent. Calcination process parameter like temperature and time requirement for oxidation was optimized varying one parameter at a time. Then, the efficient leaching condition was optimized for quantitative leaching of tantalum. The process can achieve 99.99% efficient leaching, the process can successfully be applied for feasible industrial-scale tantalum scrap recycling. The HF substituent lixiviant can add advantages to overcome occupational and industrial operation safety challenges associated with HF lixiviant. The reported valorization process can be a sustainable tantalum recycling process that simultaneously can address UNO sustainable development goal, WEEE directive, and UNEP E-Waste Management goal.


Assuntos
Resíduo Eletrônico , Gerenciamento de Resíduos , Resíduo Eletrônico/análise , Indústrias , Reciclagem , Semicondutores , Tantálio
3.
ACS Omega ; 6(46): 30942-30948, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34841137

RESUMO

TiO2 is an attractive catalyst for the photocatalytic degradation of organic pollutants. However, owing to its large band gap, it can only be activated by ultraviolet (UV) light, which constitutes a small portion of solar energy. Therefore, there has been significant interest in extending its light absorption range from UV to visible light. In this study, fluorinated TiO2 hollow spheres (FTHSs) were prepared via a rapid and simple wet chemical process using ammonium hexafluorotitanate, and then FTHS/WO3 heterostructures with different weight ratios of the FTHS and WO3 nanoparticles were synthesized via a simple wet impregnation method. The formation of the hybrid structure was confirmed by various characterization techniques. The photocatalytic activity of the synthesized photocatalysts in the photodegradation of rhodamine B, a model pollutant, was evaluated under visible light irradiation. The FTHS/WO3 heterostructures exhibited significantly improved photocatalytic activity compared to the bare FTHS or WO3 nanoparticles. The photodegradation efficiency of the FTHS/WO3 heterostructure in the present study was up to 0.0581 min-1. Detailed mechanisms that lead to the enhanced photocatalytic activity of the heterostructures are discussed. In addition, comparative experiments reveal that the photodegradation efficiency of the FTHS/WO3 heterostructure under visible light irradiation is superior to that of the P25/WO3 heterostructure prepared from the commercially available TiO2 catalyst (P25) via the same impregnation method.

4.
J Nanosci Nanotechnol ; 20(1): 404-408, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383185

RESUMO

Amine-terminated CdTe quantum dots were fabricated by a non-toxic, facile, one-pot method via a non-dimethylcadmium precursor and non-injection-based synthesis. To enhance the quantum yield of the CdTe quantum dots, sufficient passivation of the surface was accomplished with alkyl amines, and their structure, optical properties, and photoluminescence efficiency were investigated. For amine-terminated CdTe quantum dots, the position of the absorption peak was red-shifted at timelapse, which implies an increase in the size of the nanocrystals. In particular, the shorter the alkyl chain length, the higher the growth rate. Photoluminescence quantum yield for oleylamine-CdTe quantum dots, determined using rhodamine 6G as a standard, showed an improvement of 41% compared to that of non-functionalized CdTe quantum dots. These results could be described by the kinetics of nucleation and growth and the effects of steric hindrance with regard to alkyl chain length on quantum dots.

5.
Waste Manag ; 87: 597-611, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31109560

RESUMO

Recycling of the waste LCD and recovery of indium which is an important classified critical raw material rarely have been industrially valorized for the circular economy due to lack of technology. Waste specific technology development is a cost-intensive and time-consuming process for the recycling industry. Hence, integrating existing technology for the purpose can address the e-waste issue in general and waste LCD in particular. Waste LCD and LCD industry itching wastewater are two important challenges can be addressed through an insightful combination of two. Hence, here possible integration of waste LCD leaching process with ITO wastewater treatment has been focused on indium recovery purpose. From our perspective process integration can be managed in two different ways, i.e., waste-to-waste mix stream process and integration of two different valorization processes for complete recovery of indium. With reference to indium recovery and context of e-waste recovery the process integration can be managed in two different ways, i.e., (i) waste LCD leaching with ITO etching industry wastewater then valorized (Waste-to-waste mix stream), (ii) Integration of waste LCD leaching process with ITO wastewater treatment process (integration of two valorization processes).Through proposed process semiconductor manufacturing industry and ITO recycling industry can address various issues like; (i) waste disposal, as well as indium recovery, (ii) brings back the material to production stream and address the circular economy, (ii) can be closed-loop process with industry and (iii) can be part of cradle-to-cradle technology management and lower the futuristic carbon economy, simultaneously.


Assuntos
Resíduo Eletrônico , Gerenciamento de Resíduos , Índio , Reciclagem , Semicondutores , Águas Residuárias
6.
Mater Sci Eng C Mater Biol Appl ; 95: 95-103, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30573275

RESUMO

TiO2 nanoparticles as an active sunscreen ingredient generate reactive oxygen species (ROS) upon UVA irradiation which is cytotoxic, genotoxic and potential to damage the DNA. The health concern and potential risks from TiO2 can be mitigated by shielding the particles through the suitable coating. Considering the advantages of SiO2, SiO2 coated TiO2 nanoparticles can be a potential material which can replace TiO2 for thickening, whitening, lubricating, and sunscreen ingredient in cosmetics. This article reports the synthesis of cosmetic grade TiO2-SiO2 core-shell nanopowder from mechanically milled TiO2 nanopowder for commercial mass production. From commercial TiO2 nanopowder was fabricated through size reduction by nanoset milling. Followed by the fabricated TiO2 nanopowder coated with SiO2 through sol-gel technique. A suitable optimum condition was explored for cosmetic grade TiO2-SiO2 core-shell nanopowder. Various physical properties and optical properties were analyzed. Synthesized of cosmetic grade TiO2-SiO2 core-shell nanopowder found to be at 100 nm size, with a homogeneous SiO2 coating having UVA protection factor 39 and sun protection factor (SPF) is 42. From the size, safety, and SPF perspective it can be an excellent cosmetic grade powder and from process simplicity perspective it can be commercially viable.


Assuntos
Nanopartículas/química , Dióxido de Silício/química , Titânio/química , Raios Ultravioleta
7.
Front Chem ; 6: 458, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30345270

RESUMO

Nitrogen doped TiO2 (N-TiO2) nanoparticles were synthesized via a novel plasma enhanced electrolysis method using bulk titanium (Ti) as a source material and nitric acid as the nitrogen dopant. This method possesses remarkable merits with regard to the direct-metal synthesis of nanoparticles with its one-step process, eco-friendliness, and its ability to be mass produced. The nanoparticles were synthesized from bulk Ti metal and dipped in 5-15 mmol of a nitric acid electrolyte under the application of AC 500 V, the minimum range of voltage to generate plasma. By controlling the electrolyte concentration, the nanoparticle size distribution could be tuned between 12.1 and 24.7 nm using repulsion forces via variations in pH. The prepared N-TiO2 nanoparticles were calcined at between 100 and 300°C to determine their photocatalytic efficiency within the visible-light region, which depended on their crystal structure and N doping content. Analysis showed that the temperature treatment yielded an anatase TiO2 crystalline structure when the N doping content was varied from 0.4 to 0.54 at.%. In particular, the 0.4 at.% N doped TiO2 catalyst exhibited the highest catalytic performance with quadruple efficiency compared to the P-25 standard TiO2 nanoparticles, which featured a 91% degradation of methyl orange organic dye within 300 min. This solid-liquid reaction based on plasma enhanced electrolysis could open new pathways with regard to high purity mass producible ceramic nanoparticles with advanced properties.

8.
Chemosphere ; 194: 793-802, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29253824

RESUMO

The current study focuses on the understanding of leaching kinetics of metal in the LTCC in general and silver leaching in particular along with wet chemical reduction involving silver nanoparticle synthesis. Followed by metal leaching, the silver was selectively precipitated using HCl as AgCl. The precipitated AgCl was dissolved in ammonium hydroxide and reduced to pure silver metal nanopowder (NPs) using hydrazine as a reductant. Polyvinylpyrrolidone (PVP) used as a stabilizer and Polyethylene glycol (PEG) used as reducing reagent as well as stabilizing reagent to control size and shape of the Ag NPs. An in-depth investigation indicated a first-order kinetics model fits well with high accuracy among all possible models. Activation energy required for the first order reaction was 21.242 kJ mol-1 for Silver. PVP and PEG 1% each together provide better size control over silver nanoparticle synthesis using 0.4 M hydrazine as reductant, which provides relatively regular morphology in comparison to their individual application. The investigation revealed that the waste LTCC (an industrial e-waste) can be recycled through the reported process even in industrial scale. The novelty of reported recycling process is simplicity, versatile and eco-efficiency through which waste LTCC recycling can address various issues like; (i) industrial waste disposal (ii) synthesis of silver nanoparticles from waste LTCC (iii) circulate metal economy within a closed loop cycle in the industrial economies where resources are scarce, altogether.


Assuntos
Cerâmica/química , Nanopartículas Metálicas/química , Reciclagem , Prata/química , Resíduos Industriais/análise , Cinética , Pós/síntese química , Pós/química , Temperatura
9.
Waste Manag ; 69: 79-87, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28830723

RESUMO

Considering the value of silver metal and silver nanoparticles, the waste generated during manufacturing of low temperature co-fired ceramic (LTCC) were recycled through the simple yet cost effective process by chemical-metallurgy. Followed by leaching optimization, silver was selectively recovered through precipitation. The precipitated silver chloride was valorized though silver nanoparticle synthesis by a simple one-pot greener synthesis route. Through leaching-precipitation optimization, quantitative selective recovery of silver chloride was achieved, followed by homogeneous pure silver nanoparticle about 100nm size were synthesized. The reported recycling process is a simple process, versatile, easy to implement, requires minimum facilities and no specialty chemicals, through which semiconductor manufacturing industry can treat the waste generated during manufacturing of LTCC and reutilize the valorized silver nanoparticles in manufacturing in a close loop process. Our reported process can address issues like; (i) waste disposal, as well as value-added silver recovery, (ii) brings back the material to production stream and address the circular economy, and (iii) can be part of lower the futuristic carbon economy and cradle-to-cradle technology management, simultaneously.


Assuntos
Resíduo Eletrônico , Nanopartículas Metálicas/química , Reciclagem/métodos , Semicondutores , Prata/química , Cerâmica/química , Nanopartículas Metálicas/análise , Metalurgia , Prata/análise , Temperatura
10.
Environ Res ; 140: 704-13, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26094059

RESUMO

Dust generated during metal organic vapor deposition (MOCVD) process of GaN based semiconductor power device industry contains significant amounts of gallium and indium. These semiconductor power device industry wastes contain gallium as GaN and Ga0.97N0.9O0.09 is a concern for the environment which can add value through recycling. In the present study, this waste is recycled through mechanochemical oxidation and leaching. For quantitative recovery of gallium, two different mechanochemical oxidation leaching process flow sheets are proposed. In one process, first the Ga0.97N0.9O0.09 of the MOCVD dust is leached at the optimum condition. Subsequently, the leach residue is mechanochemically treated, followed by oxidative annealing and finally re-leached. In the second process, the MOCVD waste dust is mechanochemically treated, followed by oxidative annealing and finally leached. Both of these treatment processes are competitive with each other, appropriate for gallium leaching and treatment of the waste MOCVD dust. Without mechanochemical oxidation, 40.11 and 1.86 w/w% of gallium and Indium are leached using 4M HCl, 100°C and pulp density of 100 kg/m(3,) respectively. After mechanochemical oxidation, both these processes achieved 90 w/w% of gallium and 1.86 w/w% of indium leaching at their optimum condition.


Assuntos
Gálio/química , Resíduos Industriais , Nitrogênio/química , Compostos Orgânicos/química , Semicondutores , Microscopia Eletrônica de Varredura , Oxirredução , Espectrometria por Raios X
11.
Environ Res ; 138: 401-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25769129

RESUMO

Waste dust generated during manufacturing of LED contains significant amounts of gallium and indium, needs suitable treatment and can be an important resource for recovery. The LED industry waste dust contains primarily gallium as GaN. Leaching followed by purification technology is the green and clean technology. To develop treatment and recycling technology of these GaN bearing e-waste, leaching is the primary stage. In our current investigation possible process for treatment and quantitative leaching of gallium and indium from the GaN bearing e-waste or waste of LED industry dust has been developed. To recycle the waste and quantitative leaching of gallium, two different process flow sheets have been proposed. In one, process first the GaN of the waste the LED industry dust was leached at the optimum condition. Subsequently, the leach residue was mixed with Na2CO3, ball milled followed by annealing, again leached to recover gallium. In the second process, the waste LED industry dust was mixed with Na2CO3, after ball milling and annealing, followed acidic leaching. Without pretreatment, the gallium leaching was only 4.91 w/w % using 4M HCl, 100°C and pulp density of 20g/L. After mechano-chemical processing, both these processes achieved 73.68 w/w % of gallium leaching at their optimum condition. The developed process can treat and recycle any e-waste containing GaN through ball milling, annealing and leaching.


Assuntos
Resíduo Eletrônico/análise , Gálio/análise , Reciclagem/métodos , Gerenciamento de Resíduos/métodos , Resíduos Industriais/análise
12.
J Nanosci Nanotechnol ; 14(12): 8974-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25970993

RESUMO

The Ni/yttria-stabilized zirconia (YSZ) anode morphology of an anode-supported solid oxide fuel cell (SOFC) unit cell was improved by nickel nanoparticle infiltration. A colloidal route was selected for efficient fabrication of nickel metal nanoparticles and subsequent infiltration into the Ni/YSZ anode of a pre-fired SOFC unit cell. The power density of the anode-supported SOFC unit cell was measured by the potentiostatic method to investigate the effect of nickel nanoparticle infiltration. The increase in the power density of the Ni/YSZ anode with nickel nanoparticle infiltration became gradually less significant as the SOFC operating temperature increased from 700 to 800 degrees C. The improved performance of the Ni/YSZ anode with nickel nanoparticle infiltration compared to that of an anode without nickel nanoparticles is tentatively attributed to two factors: The discretely distributed nanoparticles on the nanostructured electrodes exhibited significant catalytic effects on the electrochemical performance of the electrodes, in addition to substantially increasing the triple phase boundary lengths.

13.
J Nanosci Nanotechnol ; 14(10): 7636-40, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25942840

RESUMO

In this study, CdSe core and CdSe/ZnSe core/shell quantum dots with a narrow size distribution were synthesized in a micro-reactor. A PMMA coating applied to the surface of CdSe/ZnSe core/shell QDs to prevent degradation gave improved dispersion stability compared to the CdSe core and CdSe/ZnSe core/shell. Many previous approaches to dispersion stability have not been quantitatively assessed. The dispersion stability was confirmed by multiple light scattering measurement. Additionally, the PMMA-coated CdSe/ZnSe QDs showed greatly improved optical properties with a photoluminescence quantum yield up to 80%. This structural motif is expected to prevent the degradation of QDs.


Assuntos
Compostos de Cádmio/química , Fenômenos Ópticos , Polimetil Metacrilato/química , Pontos Quânticos/química , Compostos de Selênio/química , Compostos de Zinco/química , Absorção Fisico-Química , Estabilidade de Medicamentos , Microtecnologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...